ISSN 2097-6054(网络) ISSN 1672-9234(印刷) CN 11-5289/R
主管:中国科学技术协会 主办:中华护理学会
出版:中华护理杂志社
收录:中国科学引文数据库(CSCD)来源期刊
   中国期刊全文数据库
   中国核心期刊(遴选)数据库
   Scopus

中华护理教育 ›› 2025, Vol. 22 ›› Issue (9): 1049-1056.doi: 10.3761/j.issn.1672-9234.2025.09.004

• 专题策划——护理教育数智化发展 • 上一篇    下一篇

急性左心衰竭临床护理决策思维人工智能训练系统的开发及在新入职护士中的应用研究

方蘅英(), 曲峰蕾, 程龙, 胡望静, 贾佳欣, 李慧娟()   

  1. 510630 广州市 中山大学附属第三医院
  • 收稿日期:2025-05-26 出版日期:2025-09-15 发布日期:2025-09-19
  • 通讯作者: 李慧娟,博士,主任护师,E-mail:lihuij5@mail.sysu.edu.cn
  • 作者简介:方蘅英,女,博士,主任护师,E-mail:fanghy@mail.sysu.edu.cn
  • 基金资助:
    广东省岭南南丁格尔护理研究院;广东省护理学会护理创新研究发展课题(YJYZ202302);广东省护理学会护理创新研究发展课题(YJYZ202308)

Development of an artificial intelligence training system for clinical nursing decision-making thinking in acute left heart failure and its application effect among newly recruited nurses

FANG Hengying(), QU Fenglei, CHENG Long, HU Wangjing, JIA Jiaxin, LI Huijuan()   

  • Received:2025-05-26 Online:2025-09-15 Published:2025-09-19

摘要:

目的 探讨急性左心衰竭临床护理决策思维人工智能训练系统在新入职护士中的初步应用效果。方法 以急性左心衰竭的发生机制为依据,设计不同病因的急性左心衰竭案例,撰写基于标准化病人的案例对话脚本,利用人工智能自然语言处理技术,形成急性左心衰竭护理虚拟模拟情景;开发包含个人信息、案例训练、考核评价、系统管理4个模块的急性左心衰竭临床护理决策思维人工智能训练系统。2025年5月,将该系统的案例1应用于该院在职的新入职护士中。结果 173名新入职护士共产生411份训练数据。173名新入职护士在急性左心衰竭临床护理决策思维上的得分为(70.99±8.63)分;对于411份训练数据,总体决策正确率的均值为73.53%,训练总响应时间中位数为794.96[四分位数间距(IQR)=777.11] s,决策点响应时间中位数为29.44(IQR=28.78)s。结论 急性左心衰竭临床护理决策思维人工智能训练系统具有可用性,有助于激发新入职护士的学习热情,发现新入职护士在急性左心衰竭临床护理决策思维上的薄弱之处。

关键词: 新入职护士, 急性左心衰竭, 护理决策, 思维, 人工智能

Abstract:

Objective To explore the preliminary application effect of the artificial intelligence training system for clinical nursing decision-making thinking in acute left heart failure for the training of newly recruited nurses. Methods Based on the pathogenesis of acute left heart failure,cases of acute left heart failure with different etiologies were designed,and case dialogue scripts based on standardized patients were drafted. By using artificial intelligence natural language processing technology,virtual simulation scenarios for acute left heart failure nursing were created. An artificial intelligence training system for nursing decision-making thinking was finally developed,which includes four modules:personal information,case training,assessment and evaluation,and system management. In May 2025,the system was applied to 173 newly recruited nurses in the hospital. Results A total of 411 training data were generated from 173 newly recruited nurses. The score of newly recruited nurses in clinical nursing decision-making thinking for acute left heart failure was(70.99±8.63) points,with an overall decision-making accuracy rate of 73.53%. The total response time for each training session was 794.96 s[interquartile range(IQR)=777.11],and the response time for decision point was 29.44 s(IQR=28.78). Conclusion The artificial intelligence training system for clinical nursing decision-making thinking in acute left heart failure is usable. It is helpful in stimulating the learning enthusiasm of newly recruited nurses,and identifying their weaknesses in clinical nursing decision-making thinking for acute left heart failure.

Key words: Newly recruited nurses, Acute left heart failure, Nursing decision-making, Thinking, Artificial intelligence