ISSN 2097-6054(网络) ISSN 1672-9234(印刷) CN 11-5289/R
主管:中国科学技术协会 主办:中华护理学会
出版:中华护理杂志社
收录:中国科学引文数据库(CSCD)来源期刊
   中国期刊全文数据库
   中国核心期刊(遴选)数据库
   Scopus

中华护理教育 ›› 2025, Vol. 22 ›› Issue (5): 617-622.doi: 10.3761/j.issn.1672-9234.2025.05.017

• 专业实践研究 • 上一篇    下一篇

结直肠癌患者肠造口周围皮肤潮湿性损伤的影响因素分析与验证研究

徐文博(),陈凤敏(),王超,侯辉,陈洁   

  1. 121000 锦州市 锦州医科大学附属第一医院(徐文博,陈凤敏);辽宁工业大学图书馆(王超);541000 桂林市 桂林理工大学图书馆(侯辉,陈洁)
  • 收稿日期:2024-10-14 出版日期:2025-05-15 发布日期:2025-05-16
  • 通讯作者: 陈凤敏,硕士,副主任护师,E-mail:chenfengmin198706@163.com
  • 作者简介:徐文博,女,硕士,副主任护师,E-mail:ruwu79@126.com
  • 基金资助:
    教育部人文社会科学研究项目(23YJA870002)

Analysis and validation of influencing factors of peristomal moisture-associated skin damage in patients with colorectal cancer

XU Wenbo(),CHEN Fengmin(),WANG Chao,HOU Hui,CHEN Jie   

  • Received:2024-10-14 Online:2025-05-15 Published:2025-05-16

摘要:

目的 探讨结直肠癌患者肠造口周围潮湿性皮肤损伤(peristomal moisture-associated skin damage,PMASD)的影响因素,并利用人工智能健康助手咨询软件根据影响因素判断PMASD的发生概率。方法 以300例结肠造口术后患者的临床数据分析PMASD的影响因素;随机选取其中200例患者的数据作为训练集对该软件进行预训练,剩余的100例作为测试集;该软件根据100例患者的数据判断其发生PMASD的概率,通过人工审核判断结果的准确性。结果 肠造口患者PMASD发生率为56.3%(169/300)。Logistic回归分析发现:患者的基础疾病、造口高度、造口周围皮肤褶皱、排便性状、造口类型、应用防漏产品及造口袋更换间隔时间是PMASD的影响因素。人工智能健康助手咨询软件判断PMASD发生概率的准确率达92%。结论 医护人员通过识别PMASD的高危影响因素并结合人工智能健康助手咨询软件辅助预测,可有效预知PMASD发生率,从而制订针对性的干预措施,降低PMASD的发生率。

关键词: 造口周围潮湿相关性皮肤损伤, 人工智能健康助手咨询软件, 结直肠癌

Abstract:

Objective To explore the influencing factors of peristomal moisture-associated skin damage(PMASD) in patients with colorectal cancer and predict the probability of PMASD occurrence using an artificial intelligence health assistant consulting software based on these factors. Methods Clinical data from 300 patients with colostomy were analyzed to identify PMASD influencing factors. Data of 200 patients were randomly selected as the training set for pre-training the artificial intelligence health assistant consulting software,while the remaining 100 cases served as the testing set. The software predicted the probability of PMASD occurrence for the 100 test cases,and the accuracy of the results was evaluated through manual verification. Results The incidence of PMASD was 56.3%(169/300). Logistic regression analysis revealed that comorbidities,stoma height,peristomal skin folds,stool consistency,enterostomy type,application of leak-proof products,and frequency of stoma bag replacement were significant influencing factors for PMASD. The artificial intelligence health assistant consulting software achieved a prediction accuracy rate of 92%. Conclusion Through identifying high-risk factors for PMASD and integrating predictions from the artificial intelligence health assistant consulting software,healthcare professionals can effectively anticipate PMASD incidence,therefore enabling the formulation of targeted interventions to reduce its occurrence.

Key words: Peristomal moisture-associated skin damage, Artificial intelligence health assistant consulting software, Colorectal cancer