ISSN 2097-6054(网络) ISSN 1672-9234(印刷) CN 11-5289/R
主管:中国科学技术协会 主办:中华护理学会
出版:中华护理杂志社
收录:中国科学引文数据库(CSCD)来源期刊
   中国期刊全文数据库
   中国核心期刊(遴选)数据库
   Scopus

中华护理教育 ›› 2025, Vol. 22 ›› Issue (3): 272-277.doi: 10.3761/j.issn.1672-9234.2025.03.003

• 虚拟与模拟教学专题 • 上一篇    下一篇

生成式人工智能在ICU初级模拟师资案例设计培训中的应用研究

刘经邦(),夏叶茹,王莉,吴黎莉,宫晓艳,曹勤利,毛霞文,庄一渝()   

  1. 310016 杭州市 浙江大学医学院附属邵逸夫医院护理部
  • 收稿日期:2024-11-13 出版日期:2025-03-15 发布日期:2025-03-21
  • 通讯作者: 庄一渝,硕士,主任护师,E-mail:zhuangyy@srrsh.com
  • 作者简介:刘经邦,男,本科(硕士在读),主管护师,E-mail:liujb@srrsh.com
  • 基金资助:
    浙江省医药卫生科技计划项目(2024KY1122);浙江大学“双一流”建设护理优势特色学科特色课程建设项目

Study on the effects of generative artificial intelligence in ICU novice simulation instructor case design training

LIU Jingbang(),XIA Yeru,WANG Li,WU Lili,GONG Xiaoyan,CAO Qinli,MAO Xiawen,ZHUANG Yiyu()   

  • Received:2024-11-13 Online:2025-03-15 Published:2025-03-21

摘要:

目的 探讨生成式人工智能(Generative Artificial Intelligence,Gen AI)在ICU初级模拟师资案例设计培训中的应用效果。 方法 2024年8月将40名某院参加ICU初级模拟师资案例设计培训的ICU护士,采用随机数字表法,分为试验组(n=20)和对照组(n=20)。对照组在接受理论培训、考核基础上,人工设计模拟案例;试验组在接受与对照组相同的理论培训、考核的基础上,接受Gen AI在模拟案例设计中的使用培训,并依托Gen AI工具设计模拟案例。比较两组案例设计用时,以及培训满意度和案例质量得分。 结果 试验组案例设计用时为(56.20±9.35) min,短于对照组的(181.35±22.13) min(P<0.05)。试验组培训总体满意度得分为10(9,10)分,高于对照组的9(8,10)分(P<0.05)。案例质量方面,两组教学目标的明确性和适宜性、情景的仿真度和详细性、评估和反馈机制设计的合理性3个维度得分比较,差异无统计学意义(P>0.05);对照组在场景设计的合理性与逻辑性、干预措施的科学性与可行性、教学材料的实用性与可及性、案例难易程度与教学对象的匹配度4个维度上得分优于试验组,差异有统计学意义(P<0.05)。 结论 Gen AI提高了ICU初级模拟师资培训参与者的案例设计速度,并提升了其对培训的满意度。Gen AI在模拟案例设计上有较大的应用潜力,但在严谨性和专业性等方面未表现出优势,在使用Gen AI进行模拟案例设计时需进一步对案例内容进行评估和审核。

关键词: 生成式人工智能, 模拟教学, 案例设计, 师资培训, 重症监护病房

Abstract:

Objective To explore the application effects of Generative Artificial Intelligence(Gen AI) in case design training for novice simulation instructors in ICUs. Methods In August 2024,40 ICU nurses participating in case design training for novice simulation instructors in ICUs at a hospital were randomly divided into an experimental group(n=20) and a control group(n=20) using a random number table method. The control group manually designed a simulation case after receiving theoretical training and assessments. In addition to receiving the same theoretical training and assessments as the control group,the experimental group underwent training on the use of Gen AI in simulation case design and designed a simulation case using Gen AI. The time taken for case design,training satisfaction scores,and case quality scores were compared between the two groups. Results The experimental group took(56.20±9.35) minutes for case design,which was shorter than the(181.35±22.13) minutes of the control group(P<0.05). The training satisfaction score of the experimental group was 10(9,10),which was higher than the 9(8,10) of the control group(P<0.05). In terms of case quality,there were no statistically significant differences between the two groups in scores for the clarity and appropriateness of teaching objectives,the realism and detail of scenarios,and the design of evaluation and feedback mechanisms(P>0.05). Meanwhile,the control group scored higher than the experimental group in the rationality and logic of scenario design,the scientific soundness and feasibility of interventions,the completeness and practicality of teaching materials,and the alignment of case difficulty to the target learners,with statistically significant differences(P<0.05). Conclusion Gen AI improves the case design speed of trainees participating in novice simulation instructor training in ICUs and enhances their satisfaction with the training. Gen AI holds great application potential in simulation case design though show no obvious advantages in rigor and professionalism. Further evaluation and review of content are needed when using Gen AI for simulation case design.

Key words: Generative artificial intelligence, Simulation-based teaching, Case design, Teacher training, Intensive care units