[1] |
GBD Causes of Death Collaborators. and national age-sex-specific mortality for 282 causes of death in 195 countries and territories,1980-2017:a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet,2018, 392(10159):1736-1788.
doi: 10.1016/S0140-6736(18)32203-7
|
[2] |
何敏, 齐金蕾, 殷鹏, 等. 1990年与2017年中国内地及港澳地区人群跌倒疾病负担分析[J]. 伤害医学(电子版), 2020, 9(1):3-9.
|
|
He M, Qi JL, Yin P, et al. Analysis on disease burden of falls in China’s mainland,Hong Kong and Macao’s population in 1990 and 2017[J]. Inj Med Electron Ed, 2020, 9(1):3-9.
|
[3] |
陈俐, 潘惊萍, 段占祺, 等. 2015年-2018年四川省跌倒住院患者医疗费用分析[J]. 中国病案, 2020, 21(3):74-76.
|
[4] |
Sarmiento K, Lee R. STEADI:CDC’s approach to make older adult fall prevention part of every primary care practice[J]. J Safety Res, 2017, 63:105-109.
doi: S0022-4375(17)30249-9
pmid: 29203005
|
[5] |
张文坚, 马灵甫, 雷宇红, 等. 风险预警信息系统在血液内科患者跌倒风险管理中的应用[J]. 中西医结合护理(中英文), 2020, 6(10):302-304.
|
[6] |
李晶. 跌倒管理信息系统的建立及应用[J]. 中华护理杂志, 2017, 52(11):1347-1350.
|
|
Li J. Establishment and application of information system for fall managment[J]. Chin J Nurs, 2017, 52(11):1347-1350.
|
[7] |
李亚玲, 丁福. STEADI工具包特点及其在预防老年人跌倒中的应用进展[J]. 中国护理管理, 2019, 19(4):627-631.
|
|
Li YL, Ding F. Characteristics of the STEADI Toolkit and its application in preventing falls in the elderly[J]. Chin Nurs Manag, 2019, 19(4):627-631.
|
[8] |
Simón M, Giraldo L, Sommer J, et al. Fall risk assessment through a self-service terminal in the outpatient setting[J]. Stud Health Technol Inform, 2019, 264:1352-1355.
|
[9] |
Baus A, Zullig K, Long D, et al. Developing methods of repurposing electronic health record data for identification of older adults at risk of unintentional Falls[J]. Perspect Health Inf Manag, 2016,13(Spring):1b.
|
[10] |
Lindberg DS, Prosperi M, Bjarnadottir RI, et al. Identification of important factors in an inpatient fall risk prediction model to improve the quality of care using EHR and electronic administrative data:a machine-learning approach[J]. Int J Med Inform, 2020, 143:104272.
doi: 10.1016/j.ijmedinf.2020.104272
|
[11] |
Lee JY, Jin YJ, Piao JS, et al. Development and evaluation of an automated fall risk assessment system[J]. Int J Qual Health Care, 2016, 28(2):175-182.
doi: 10.1093/intqhc/mzv122
|
[12] |
李海红, 马靓, 张明艳, 等. 住院患者跌倒信息化管理体系的构建及应用[J]. 中国临床研究, 2020, 33(7):999-1002.
|
[13] |
李曙光, 蒋红, 郎黎薇, 等. 预防患者跌倒APS规范化实践体系的构建及应用[J]. 护理学杂志, 2019, 34(13):1-4.
|
|
Li SG, Jiang H, Lang LW, et al. Construction and application of an APS standardized practice system for patient falls prevetion[J]. J Nurs Sci, 2019, 34(13):1-4.
|
[14] |
王颖, 陆丽娟, 尹世玉, 等. 信息化过程控制在预防住院患者跌倒中的应用[J]. 中国护理管理, 2017, 17(11):1536-1539.
|
|
Wang Y, Lu LJ, Yin SY, et al. Application of an informational process control to prevent inpatient fall[J]. Chin Nurs Manag, 2017, 17(11):1536-1539.
|
[15] |
丁湘云, 程艳爽, 黄静, 等. 住院患者跌倒监测系统的研发与临床验证[J]. 解放军医学院学报, 2021, 42(6):686-690,693.
|
|
Ding XY, Cheng YS, Huang J, et al. Research and clinical verification of fall monitoring system for inpatients[J]. Acad J Chin PLA Med Sch, 2021, 42(6):686-690,693.
|
[16] |
Harari Y, Shawen N, Mummidisetty CK, et al. A smartphone-based online system for fall detection with alert notifications and contextual information of real-life falls[J]. J Neuroeng Rehabil, 2021, 18(1):124.
doi: 10.1186/s12984-021-00918-z
pmid: 34376199
|
[17] |
Kiprijanovska I, Gjoreski H, Gams M. Detection of gait abnormalities for fall risk assessment using wrist-worn inertial sensors and deep learning[J]. Sensors(Basel), 2020, 20(18):5373.
|
[18] |
严远忠. 基于多信息融合的老人跌倒检测系统[D]. 深圳: 中国科学院大学(中国科学院深圳先进技术研究院), 2018.
|
|
Yan YZ. Fall detection system for elderly base on multiple information fusion[D]. Shenzhen: Shenzhen Institutes of Ad-vanced Technology,Chinese Academy of Sciences, 2018.
|
[19] |
Cai WY, Guo JH, Zhang MY, et al. GBDT-based fall detection with comprehensive data from posture sensor and human skeleton extraction[J]. J Healthc Eng, 2020, 2020:8887340.
|
[20] |
Hsu FS, Chang TC, Su ZJ, et al. Smart fall detection framework using hybridized video and ultrasonic sensors[J]. Micro-machines (Basel), 2021, 12(5):508.
|
[21] |
Geertsema EE, Visser GH, Viergever MA, et al. Automated remote fall detection using impact features from video and audio[J]. J Biomech, 2019, 88:25-32.
doi: S0021-9290(19)30185-X
pmid: 30922611
|
[22] |
Quigley PA, Votruba L, Kaminski J. Outcomes of patient-engaged video surveillance on falls and other adverse events[J]. Clin Geriatr Med, 2019, 35(2):253-263.
doi: 10.1016/j.cger.2019.01.005
|
[23] |
朱连杰, 陈正宇, 田晨林. 基于可穿戴设备的跌倒检测方法综述[J]. 计算机工程与应用, 2019, 55(18):8-14.
|